姓 名: 周奇
职 称: 教授,博士生导师
职 务: 副院长
电 话: 027-87540185
电子邮箱:qizhou@hust.edu.cn & qizhouhust@gmail.com
个人基本情况
周奇,教授,博士生导师,16877太阳集团副院长,太空安全与维护数字工程技术湖北省国防科技创新中心主任,英国帝国理工访问学者,美国佐治亚理工联合培养博士,首批国防创新“引领基金”获得者, 入选中国科学技术协会 “第六届青年人才托举工程”、湖北省教育厅重大人才计划、16877太阳集团“优秀青年教师培养计划”、“华中卓越学者”,获国家自然科学基金优秀结题奖、16877太阳集团“学术新人奖”,美国航空航天学会(AIAA)高级会员,中国机械工程学会(CMES)高级会员。迄今以第一/通讯作者在《AIAA Journal》、《Journal of Mechanical Design》等国际知名期刊发表SCI论文50余篇,含ESI高被引论文4篇,领域前沿论文3篇,封面论文2篇;出版英文专著2部、教材1部、中文专著2部;授权国家发明专利10余项,软件著作权10余项;担任《Chinese Journal of Mechanical Engineering》青年编委、《中国舰船研究》青年编委、《机械设计》青年编委、第七届国际系统建模与优化设计会议(ICSMO)分会场主席、第九届控制-机电一体化与自动化国际会议(ICCMA)分会场主席,ICAME 2018等10余国际会议技术委员会委员。
工作经历
2024/01-至今 16877太阳集团 教授(破格晋升)
2019/11-2023/12 16877太阳集团 副教授(破格晋升)
2019/09-2020/08 英国帝国理工学院 访问学者(优秀青年教师培养计划)
2018/02-2019/10 16877太阳集团 讲师
教育经历
2014/09-2018/01 16877太阳集团机械学院 博士
2016/09-2017/09 美国佐治亚理工学院 博士(联合培养)
2012/09-2014/04 中船重工第701研究所 硕士(提前1年毕业)
2012/09-2013/06 16877太阳集团船海学院 硕士(联合培养)
2008/09-2012/06 中国海洋大学工程学院 学士
研究方向
装备智能优化设计、机器学习、数字孪生
代表性科研项目
近五年主持重大基础研究项目、科技部重点研发计划课题、国家自然科学基金面上项目等30余项。
代表性论著
1. Zhou Qi, Zhao Min, Hu Jiexiang, Ma Mengying, Multi-fidelity surrogates modeling, optimization, and applications. Springer.
2. Jiang Ping, Zhou Qi, Shao Xinyu (2020). Surrogate Model-Based Engineering Design and Optimization. Springer, 2020.
3. Luo, Shuyang, Huang Xufeng, Wang Yanzhi, Luo Rongmin, Zhou Qi (2022). Transfer learning based on improved stacked autoencoder for bearing fault diagnosis. Knowledge-Based Systems 256: 109846.
4. Lin Quan, Hu Jiexiang, Zhou Qi*, Cheng Yuansheng, Hu Zhen, Couckuyt Ivo, Dhaene Tom. (2021). Multi-output Gaussian process prediction for computationally expensive problems with multiple levels of fidelity. Knowledge-Based Systems, 107151.
5. Zhou Qi, Wu Yuda, Guo Zhendong, Hu Jiexiang, Jin Peng* (2020). A Generalized Hierarchical Co-Kriging Model for Multi-Fidelity Data Fusion. Structural and Multidisciplinary Optimization, 62:1885–1904.
6. Hu Jiexiang, Jiang Ping, Zhou Qi*, McKeand Austin, Choi Seung-Kyum (2020). Model validation methods for multiple correlated responses via covariance-overlap based distance. Journal of Mechanical Design, 142(4): 041401.
7. Zhou, Qi, Shao Xinyu, Jiang Ping*, Xie Tingli, Hu Jiexiang, Shu Leshi, Cao Longchao, Gao Zhongmei (2018). A multi-objective robust optimization approach for engineering design under interval uncertainty. Engineering Computations, 142(4): 041401.
8. Zhou, Qi, Wang Yan, Choi Seung-Kyum, Jiang Ping*, Shao Xinyu, and Hu Jiexiang. (2017). A sequential multi-fidelity metamodeling approach for data regression. Knowledge-Based Systems, 134, 199-212.
9. Zhou, Qi, Shao Xinyu, Jiang Ping*, Gao Zhongmei, Zhou Hui, and Shu Leshi. (2016). An active learning variable-fidelity metamodelling approach based on ensemble of metamodels and objective-oriented sequential sampling. Journal of Engineering Design, 27(4-6), 205-231.
10. Zhou, Qi, Shao Xinyu, Jiang Ping*, Zhou Hui, and Shu Leshi. (2015). An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function. Simulation Modelling Practice and Theory, 59, 18-35.
论著实时更新:https://scholar.google.fr/citations?user=HEMahGkAAAAJ&hl=en
课题组毕业生去向(联合指导)
升学:
张亚辉,荷兰 阿姆斯特丹大学理学院信息系,攻读博士学位(J1,J2)
谢婷丽,美国 佐治亚理工机械学院,攻读博士学位(J3,J4)
阮雄风,比利时 鲁汶大学机械工程系,攻读博士学位(J5,J6)
程 吉,荷兰 代尔夫特理工航空工程学院,攻读博士学位(J7,J8,J9)
魏 华,比利时 根特大学工学院信息技术系,攻读博士学位(J10)
易家祥,荷兰 代尔夫特理工机械-海洋-材料学院,攻读博士学位(J11,J12,J13,J14)
就业:
王超超,华为技术有限公司,研发
孟祥争,深圳大疆创新科技有限公司,研发
彭玉童,中国航天科技集团有限公司第七研究院,研发
邬宇达,支付宝(杭州)信息技术有限公司,研发
徐 杰,海康威视数字技术股份有限公司(武汉),研发
李京昌,新加坡国立大学,博士后
李梦磊,华为技术有限公司(武汉),研发
程 萌,中船701研究所,研发
J1. Zhang, Y., Zhou, T., Huang, X., Cao, L., & Zhou, Q.* (2021). Fault diagnosis of rotating machinery based on recurrent neural networks. Measurement, 171, 108774.
J2. Jiang, P., Zhang, Y., Zhou, Q.*, Shao, X., Hu, J., & Shu, L. (2018). An adaptive sampling strategy for Kriging metamodel based on Delaunay triangulation and TOPSIS. Applied Intelligence, 48(6), 1644-1656.
J3. Xie, T., Jiang, P.*, Zhou, Q., Shu, L., Zhang, Y., Meng, X., & Wei, H. (2018). Advanced multi-objective robust optimization under interval uncertainty using kriging model and support vector machine. Journal of Computing and Information Science in Engineering, 18(4)18(4): 041012.
J4. Jiang, P., Xie, T., Zhou, Q.*, Shao, X., Hu, J., & Cao, L. (2018). A space mapping method based on Gaussian process model for variable fidelity metamodeling. Simulation Modelling Practice and Theory, 35(2), 580-603.
J5. Ruan, X., Jiang, P., Zhou, Q.*, Hu, J., & Shu, L., (2020). Variable-fidelity probability of improvement method for efficient global optimization of expensive black-box problems. Structural and Multidisciplinary Optimization, 62,3021–3052.
J6. Ruan, X., Zhou, Q., Shu, L., Hu, J., & Cao, L.* (2018). Accurate prediction of the weld bead characteristic in laser keyhole welding based on the stochastic Kriging model. Metals, 8(7), 486.
J7. Cheng, J., Jiang, P., Zhou, Q.*, Hu, J., & Shu, L. (2021). A parallel constrained lower confidence bounding approach for computationally expensive constrained optimization problems. Applied Soft Computing, 106, 107276.
J8. Cheng, J., Jiang, P., Zhou, Q.*, Hu, J., Yu, T., Shu, L., & Shao, X. (2019). A lower confidence bounding approach based on the coefficient of variation for expensive global design optimization. Engineering Computations, 36(3), 830-849.
J9. Jiang, P., Cheng, J., Zhou, Q.*, Shu, L., & Hu, J. (2019) .Variable-fidelity lower confidence bounding approach for engineering optimization problems with expensive simulations. AIAA J, 57(12), 5416–5430.
J10. Wei, H., Shu, L.*, Yang, Y., Zhou, Q., Zhong, L., & Jiang, P. (2020). An improved sequential multi-objective robust optimisation approach considering interval uncertainty reduction under mixed uncertainties. Journal of Engineering Design, 1-29.
J11. Yi, J., Zhou, Q., Cheng, Y., & Liu, J.*, (2020). Efficient adaptive Kriging-based reliability analysis combining new learning function and error-based stopping criterion. Structural and Multidisciplinary Optimization, 62(5), 2517-2536.
J12. Yi, J., Wu, F., Zhou, Q., Cheng, Y., Ling, H., & Liu, J.*, (2021). An active-learning method based on multi-fidelity Kriging model for structural reliability analysis. Structural and Multidisciplinary Optimization, 63(1), 173-195.
J13. Qian, J., Yi, J., Cheng, Y., Liu, J., Zhou, Q.*. A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem. Engineering with Computers. 2020; 36: 993-1009.
J14. Qian, J., Yi, J., Cheng, Y., Liu, J., Zhou, Q.*. A sequential constraints updating approach for Kriging surrogate model-assisted engineering optimization design problem. Engineering with Computers. 2020; 36: 993-1009.
学生获奖
博士研究生:
李京昌,研究生国家奖学金
林 泉,研究生国家奖学金
硕士研究生:
张亚辉,研究生国家奖学金
谢婷丽,研究生国家奖学金
阮雄风,研究生国家奖学金
程 吉,研究生国家奖学金
易家祥,研究生国家奖学金
邬宇达,研究生国家奖学金
程萌, 研究生国家奖学金
李梦磊,徐杰,罗舒扬 第四届智能制造赛研究生组全国一等奖
程萌, 徐杰,罗舒扬 “华为杯”第十八届中国研究生数学建模竞赛全国二等奖
黄旭丰,罗舒扬,吴金红 “华为杯”第十九届中国研究生数学建模竞赛全国二等奖
吴金红,罗荣敏,王楚 中国大学生机械工程创新创意大赛智能制造赛全国二等奖
王楚,吴金红,查志坚 “华为杯”第二十届中国研究生数学建模竞赛全国二等奖
金正龙,李保平等 “华为杯”第二十届中国研究生数学建模竞赛全国二等奖
王延之,吴金红,黄旭丰等 2022中国(天津)工业APP创新应用大赛全国二等奖
吴金红等 华为软件精英挑战赛全国二等奖
程萌,徐杰,罗舒扬 长三角数学建模大赛,研究生组全国一等奖
招生要求
踏实勤奋,有上进心,敢于担当!
课题组与美国佐治亚理工、英国帝国理工等国际知名院校建立了长期合作关系,欢迎有保研资格或立志攻读博士学位的学生咨询与申报。